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1. Background 

Photonics is the study of the creation, control, and detection of photons.  The topic is of increasing 
interest because of projected value in new types of sensor and computing devices.  As more is  
learned about the field and its applications, the larger the support for the research becomes.  It is 
closely related to quantum optics and optoelectronics.  Quantum optics refer to the principal research, 
while photonics focus on the application of the technology (1).  Opto-electronics is the emerging field 
of light-driven (photon flow) electronics as opposed to the conventional electrically driven (electron 
flow) electronics. 

The basis of photonics is the photon1.  The modern definition of the photon was developed by 
Albert Einstein during the early 1900s.  He originally called them “light quanta”.  They were first 
referred to as photons by the chemist Gilbert N. Lewis in 1926.  He based the name on the Greek 
word “phos” meaning light (1).  A photon is the most basic electromagnetic component.  The 
photon is a quanta or “packet” of electromagnetic energy that exhibits particle-like and wave-like 
characteristics.  A photon is represented by γ or as the product hν, h being Planck’s constant and ν, 
the frequency of the electromagnetic wave.  The momentum of a photon is calculated as hν/c, c 
being the speed of light which is the constant velocity of all photons.  Photons are massless and 
have no electric charge.  Photons are created during several circumstances (1): 

1. A charged particle undergoes acceleration; 

2. An atomic particle drops from a higher to lower energy state; 

3. An atomic particle is destroyed. 

The field of photonics began with the invention of the laser in 1960 by Theodore Maiman at 
Hughes Research Laboratories.  The field began to expand with the discovery of the optical fiber 
in 1970.  The optical fiber functioned as a medium for the transmission of light (1).  The optical 
fiber allowed for the controlling of photon flows.  

The wave-particle duality of light is a crucial concept in the field of photonics.  Einstein developed 
photons to explain his experiments which showed that light did not follow the classical wave 
model.  This model depicts light as a wave that propagates through a medium accordingly.  These 
wave models explain the refraction, diffraction, and interference of light since they are wave 
behaviors.  On the other hand, experiments show that photons do not spread as they propagate and 
they do not split as waves do.  These are particle-like behaviors.  This comes to the duality princi-
ple that the photon particles produce the wave-like electromagnetic field.  These characteristics of 
light are important factors in the research and application of photonics.  

                                                 
1A photon is a unit of intensity of light at the retina equal to the illumination received per square millimeter of a 

pupillary area from a surface having a brightness of one candle per square meter. 
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2. Photonic Crystals 

Photonic crystals are periodic material structures that affect the motion of photons propagating 
through them.  They affect photons in the same way a semiconductor crystal affects the motion of 
electrons.  The crystals consist of periodic dielectric structures that affect electromagnetic wave 
propagation.  A dielectric is a substance that resists electric current, meaning it acts as an electrical 
insulator.  In some instances, a lack of substance or vacancy can act as a dielectric (e.g., air).  The 
photonic crystals affect propagation by allowing electromagnetic waves of certain wavelengths to 
pass while blocking others.  A range of blocked wavelengths is called a photonic band gap (shown 
in yellow in figure 1).  There are some naturally occurring photonic crystals such as the gemstone 
opal and the substance that comprises butterfly wings (2). 

 
Figure 1.  Depiction of sample photonic band gap.  (Yellow shaded region  

shows a photonic band gap on a photonic band diagram.  The  
letters along x axis represent the different directions along the  
crystal lattice [3].) 

Diffraction is the basic principle behind the photonic crystal function. Diffraction refers to dif-
ferent wave propagation characteristics such as bending, spreading, and interference.  Diffraction 
effects occur most when the wavelength and affecting medium structure are on the same scale (2).  
The visible spectrum occurs on the 400- to 700-nm wavelength scale.  As a result, the feature 
periodicity of the photonic crystals must also exist on this scale. 

Photonic crystals can affect propagation in one, two, and three dimensions, as shown in figure 2.  
The periodic structure and dielectric nature of the crystal determine its ability to produce a band 
gap.  Lord Rayleigh was the first scientist to study the propagation of electromagnetic waves in 
periodic structured media in 1887 (2).  He studied the reflective properties of a crystalline mineral 
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that corresponded to a one-dimensional (1-D) photonic crystal.  He observed a small band gap 
through which light could not propagate through the planes of the crystal. 

 

Figure 2.  Simplified representation of one-, two-, and three-dimensional crystals (4). 

Photonic crystals possess two types of polarizations by symmetry:  the transverse magnetic (TM) 
in which the electric and magnetic fields are orthogonal to one another, and the transverse electric 
(TE) in which the electric and magnetic fields are in the same plane.  By judicious placement of 
materials with different high and low indices inside an area or volume, hypothetical TE and TM 
band gap materials may be created.  Using this simple principle, one can construct a potentially 
infinite number of variations in the topology of constituents to create photonic materials of varying 
properties, as in figure 3. 

 

Figure 3.  Sample of actual 3-D photonic band gap crystal structures (Φ gives the  
filling fraction or percentage of unit cell occupied by material [5]). 

Eli Yablonovitch and Sajeev John both submitted independent papers on the photonic band gap in 
1987, and the search for multi-dimensional band gap crystals began (6).  Yablonovitch fabricated 
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the first 3-D photonic band gap crystal while working for Bell Communications Research in 1991 
(6).  The material was composed of silicon and silicon dioxide arranged in a diamond tetrahedral 
structure.  The structure is now known as yablonovite (see figure 4).  Since their discovery, 3-D 
band gaps have been demonstrated in simple cubic and face-centered cubic structures as well.  

 

Figure 4.  Yablonovite.  (This was the first  
3-D crystal with a band gap that was  
created when holes were drilled into  
a ceramic material [7].) 

 

3. Photonic Crystal Applications 

The potential application of photonic crystals in emerging technologies is very extensive.  The 
volume of photonics research has already produced many new developments in the control of 
electromagnetic waves.  One-dimensional photonic crystals are currently used in thin-film optic 
applications.  They are also being used to form reflective layers on mirrors and lenses and to create 
color-changing inks and paints.  Two-dimensional photonic crystal fibers are produced by several 
companies to transmit and control light in frequencies that conventional fiber optics fail to transmit 
(6).  Three-dimensional photonic crystals are much more difficult to fabricate and as a result, have 
not yet been mass produced or applied to commercial products (4).   

An exploratory simulation was done to explore the use of nano photonic sensors for micro-damage 
detection (8).  El-Kady and Reha Taha demonstrated a simulation model that is comprised of a nano 
photonic sensor (NPC) attached to a composite bar.  When damage is created in the composite bar, 
the photonic sensor’s band gap profile experiences a significant change.  The schematic showing 
this proposed setup is presented in figure 5.  A slight change in the NPC’s surroundings (damage in 
the composite bar) will result in a change in the crystal’s dimensions.  As the crystal’s dimensions 
change, so do its optical properties (8).  We can use the NPC to quantify damage in the composite 
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bar by monitoring the NPC’s optical response before and after damage is induced in the bar.  The 
simulation resulted in a theoretically verified damage metric (Nano Spectrum Index) that can be 
extracted from the frequency domain response of the NPC sensor, as seen in figure 6 (8).  The 
simulation will hopefully lead to the development of NPC sensors that will allow for damage 
detection at nano scales, which is currently unattainable with contemporary sensors.   

 

Figure 5.  Schematic of simulation test setup (8). 

 

 
Figure 6.  Schematic of typical NPC sensor response from simulation.   

(Frequency shift of NPC response is caused by local damage in  
the composite bar as a result of a non-uniform strain [8].) 



 

6 

Park and Lee (9) have theoretically investigated the effect of a mechanical stress applied to a 
photonic crystal.  They report a flexible photonic crystal with a tunable band structure that is con-
trolled through the use of a nano-/microelectromechanical system actuator (see figure 7).  For the 
theoretical modeling, the photonic crystal structure consisted of a pattern of high-index dielectric 
material and a low-index flexible polymer (index referring to the refractive index of the material).  
With the large effect of physical change on the band structure of photonic crystals, a large range of 
tunability is possible (9).  With elongations as small as 10% in the photonic crystal, a change in the 
refraction angle of an incident beam was as large as 75 degrees (9).  Figure 8 shows the refraction 
angles for different elongations; these were calculated with the theoretically derived band struc-
ture.  The sizable change in refraction angle attributable to applied mechanical stress shows 
promise for the use of photonic crystals as optical beam controlling devices.  The goal of the 
research was to create a system that could control a photonic band structure in real time.  With 
control over the optical properties of the photonic crystal, the crystals can act as optical switches, 
routers, and modulators on the nano-scale (9). 

 

Figure 7.  Schematic of flexible photonic crystal.  (Mechanical stress is applied to  
the photonic crystals by micro-electro-mechanical sensors actuators on  
either side [9].) 

 

Figure 8.  Refraction angle attributable to elongation (9). 
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Jacobsen experimentally found that a linear electro-optic effect can be realized in silicon by break-
ing the crystal symmetry.  The crystal symmetry is broken through the use of a straining layer de-
posited on top of the silicon feature, e.g. wave guide (see figure 9).  In silicon’s natural state, its 
crystal symmetry prevents the existence of a linear electro-optic effect (10).  As the silicon is 
strained, its bulk refractive index fluctuates in a linear fashion as a function of an externally 
applied electric field.  The experiment was conducted when a silicon nitride glass straining layer 
was deposited on a silicon wave guide; the entire structure was on a silicon-on-insulator (SOI) 
wafer (10).  Application of silicon as an opto-electronic material is a highly sought-after objective.  
This would allow for the creation of combination electronic and optic components composed 
entirely of silicon.  The overall goal of the research is to eventually use a strain-induced electro-
optic effect to replace the electronic bus in computers with an optical bus that performs at higher 
speeds (10).   

 
Figure 9.  Strain on a crystalline silicon:  (a) crystalline silicon waveguide on an SOI wafer;  

(b) wave guide with a deposited straining layer (10). 

Many papers have recently been published, documenting the advances in the field.  These advances 
will hopefully lead to commercialization of photonic crystals for advanced technologies.  Most of 
the research is in its infancy and therefore, many are theoretical simulations and analytical explora-
tions.  As the field and technology advances, more of these applications will be attempted experi-
mentally.  The experiments will demonstrate whether the applications are commercially viable. 
 

4. Dispersion Curve MATLAB2 Program  

With MATLAB, programs were written to compute the phonon dispersion curves for different 
materials.  We adopted the use of phonons instead of photons for didactic demonstration of band 
gaps.  The code driving the programs was written with Kittel’s text (11) as a primary reference.  
The text explained the calculation of dispersion curves for 1-D crystal lattices with a monatomic 
structure as well as with a basis.  After a code was written to display the dispersion curves for a 1-D 

                                                 
2MATLAB is a registered trademark of The MathWorks, http://www.mathworks.com. 
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crystal, the calculations were further expanded and a program was created to show the dispersion 
curves through a 2-D planar crystal lattice.  The MATLAB program provides powerful graphing 
abilities that were well suited to simulating the dispersion curve calculations.  The ensuing sections 
show the derivations behind the calculations, the program code, and sample output from the 
programs.  

The phonon program is a good starting point for the further study of photonics.  The calculation of 
the phonon dispersion curves is more pedagogically simplistic for understanding band gaps.  The 
phonon program provides a foundation for the possible extension to graph photonic curves.  The 
ability to graph the frequency at which electromagnetic energy quanta can pass through different 
crystal lattices is an invaluable tool.  The graphs show the band gaps and they would be extremely 
useful for the manufacture and control of materials for photonics applications.   

The following sections show the derivations of equations showing the frequency of vibration based 
on a wave vector k.  These modes of vibration are known as phonons and they occur in structures 
with rigid crystal lattices (11).  These phonon mode graphs are known as dispersion curves.  The 
physical, such as thermal and conductive, properties of materials depend on these phonons. 

The first derivation in section 4.1 is for the normal modes of a 1-D monatomic Bravais lattice.  In a 
Bravais lattice, all the lattice points are the same.  This by default means that the ions in the crystal 
are all the same kind, thus the monatomic label. 

The derivation in section 4.2 is for the normal modes of a 1-D lattice with a basis.  This is still a 
Bravais lattice because the basis is an identical ion.   

Section 4.3 contains the derivation for the normal modes of a 2-D monatomic lattice.  Instead of 
the 1-D chain, this derivation solves for the phonon modes of a 2-D planar crystal structure. 

The next step would be to further develop the 2-D code to handle general crystal structures.  This 
code would need to handle different crystal structures with different ions at lattice points or struc-
tures with ions that have a basis.  After that is completed, a comprehensive code for a 3-D lattice 
could be formulated.  This would increase the code’s complexity immensely and would yield a 
powerful computational tool. 

4.1 Normal Modes of a One-Dimensional Monatomic Bravais Lattice  

Take a line of ions all of the same mass M spaced at an interval distance of a, as indicated in 
figure 10.  This gives the 1-D Bravais lattice vectors as R = na, where n is a counting integral.  
Assuming the line is envisioned in the horizontal direction, the displacement of a given ion from 
its equilibrium position is u(na).  The most basic way to view the chain of ions is as a spring-mass 
chain as seen in figure 10.  This allows for the spring potential energy equation to represent the 
fundamental interaction between the ions. 
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Figure 10.  Representation of a 1-D chain (12). 

 2

2
1 kxU = . 

The potential energy U is equated to a function of the spring constant k and the ion displacement.  

 
;
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k K
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= − +

 

The spring constant k is replaced with K=φ”(a), where φ(x) represents the interaction energy of 
two ions at distance x apart along the line (spring constant).  This interaction energy is found with 
the Lennard-Jones potential described in appendix A.  We find the displacement x by taking the 
displacement of the ion from equilibrium and subtracting the displacement of the next ion from its 
equilibrium.  These substitutions give the harmonic potential energy equation as the summation 
over all ions in the chain: 

 ∑ +−=
n

harm anunauKU 2)]]1([)([
2
1 , (1) 

 )]]1([)]1([)(2[
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The equations of motion of the ions show the theoretical interaction of two neighboring ions 
connected by a perfect spring (11).  We find the motion equation by taking the derivative of the 
harmonic potential energy with respect to the ion’s displacement. 

If the chain is considered a finite system with N ions, boundary conditions can be implemented to 
retrieve solutions from the motion equation.  In order to apply boundary conditions, the finite 
chain must be viewed as a loop so the N+1 ion is the first ion of the chain (11).  These boundary 
conditions are expressed mathematically as 

 )()0();()]1([ NauuauaNu ==+ . (3) 

Solutions to the equation of motion in equation 2 take the form  

 )(),( tknaietnau ω−∝ . (4) 

Applying the boundary conditions of equation 3 leads to the wave vector k equation to be 
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N
n

a
keikNa π2;1 == . (5) 

Only N values of k consistent with equation 5 yield distinct solutions, taken between -π/a and π/a 
in order to view the dispersion curve about the zero wave vector.  This range covers 2π/a; any of 
the distinct solutions shifted by 2π/a will return the same result, meaning that this range produces 
the entire distinct dispersion curve. 

Substituting the solutions of the form in equation 4 into the equation 2 of motion gives the 
following: 

 )()(2 ]2[ tknaiikaikatknai eeeKeM ωωω −−− −−−=− . (6) 

Euler’s formulas (subtraction) can be used to simplify equation 6 to a more manageable and 
graphing friendly result.  The Euler subtraction is shown below: 
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Using the simplification in equation 6, 
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The final equation of the dispersion curve frequency as a function of the wave vector k is shown 
by equation 8; it is found with the half angle to further simplify result in equation 7: 

 

2 2

2
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2 2
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 (8) 

Solutions describing the actual displacement of the ions are given by the real or imaginary parts 
of equation 4, i.e.,  
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4.2 Normal Modes of a One-Dimensional Lattice with a Basis 

The normal mode calculation of a 1-D lattice with a basis is very similar to the monatomic proce-
dure.  The representation in figure 11 shows the physical schematic as well as the spring-mass 
chain visualization.  The ions all have the same mass, M.  In this crystal structure, there are two 
equilibrium positions, na and na+d, for the ion and its basis, respectively.  It is assumed that only 
the closest neighbors interact.   

 
Figure 11.  Representation of a 1-D chain with a basis (11). 

The spring-mass chain representation can be expressed mathematically as 

 2
22

2
11 2

1
2
1 xkxkU += . 

The potential energy is equal to the spring constant and the ion displacement.  For the lattice with 
a basis, both ions must be accounted for and because of the difference in separation distances, the 
different spring constants and displacements must be recognized. 

1 2
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-u1(na) is the displacement of ion oscillating around site na, 
-u2(na) is the displacement of ion oscillating around site na+d. 

As before, the spring constant k is replaced with K, G=φ”(a), where φ(x) represents the interaction 
energy of two ions at distance x apart along the line (spring constant).  This interaction energy is 
found with the Lennard-Jones potential (appendix A).  These substitutions give the harmonic 
potential energy equation as the summation over all ions in the chain: 
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From the harmonic potential energy equation, the equations of motion can be found if we take 
the second derivative: 

1
1

1 2 1 2
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There will be two solutions to the motion system of equations.  This is because there will be two 
modes for the ion and its basis.  They can be oscillating at different frequencies about their 
respective equilibrium positions.  These solutions will take the form 
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The values of ε1 and ε2 are ratios that will specify the relative amplitude and phase of vibration of 
the ions within each lattice cell (11).  The same boundary conditions used for the 1-D monatomic 
chain are used again to retrieve solutions from the equations of motion.  Substituting the solution 
equations into the equations of motion produces two coupled equations by canceling the common 
exponential factor, leading to 
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1 2
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1 2
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The homogeneous equations will have a solution, provided the determinant of the coefficients 
vanishes, leaving 

kaKGGKGeKGKM ika cos2)]([ 22222 ++=+=+− −ω . 

This equation is satisfied by two positive values of ω.  These two values correspond to two 
different modes on the dispersion diagram and are found from the roots of 

kaKGGK
MM

GK cos21 222 ++±
+

=ω . 

4.3 One-Dimensional MATLAB Results 

The MATLAB code can be modified to find the 1-D phonon normal modes for a monatomic chain 
as well as a chain with a basis.  The code in appendix B solves for the 1-D normal modes.  In that 
code, the two solutions to ω (ion oscillation frequency) can be seen in the wave vector loop.  
Including both of those equations gives the solution for a 1-D chain with a basis (see figure 12).   
If one of the equations is removed, the dispersion curve shows the normal mode for a 1-D chain 
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without a basis (see figure 13).  The dispersion relations are symmetric about the zero wave vector.  
As mentioned in the derivation for the code in section 4.1, the wave vectors from -π/a to π/a gene-
rate the entire curve for the dispersion relation.  The curve would simply be repeated if a larger 
range of k were graphed.  At small values of the wave vector, the relation is linear; the wave vector 
is short enough to be comparable to the particle spacing; thus, the linearity ceases and the disper-
sion curve flattens as the group velocity tends to zero (11).  The group velocity is the velocity at 
which the change in the shape of the wave's amplitude propagates through a medium (1).  This 
corresponds to the slope of the dispersion curve. 
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Figure 12.  Dispersion curve for a 1-D chain with a basis. 

 
Figure 13.  Dispersion curve for a monatomic 1-D chain. 
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The two functions of frequency, ω, are known as the two branches of the dispersion relation (11).  
The lower branch is known as the acoustic branch because its dispersion curve is in a form similar 
to sound waves.  The upper branch is referred to as the optical branch because the longer wave-
length optical modes in crystals can interact with electromagnetic radiation.  The longer wave-
length modes are also responsible for the optical characteristics of the crystal (11).  

Figure 14 shows the vibration of the ions in the 1-D chain with a basis for the acoustic and optical 
branch.  If the wave vector is taken to be zero, the frequency is equal to zero.  This causes the ion 
and basis to have the same amplitude and phase.  The pair moves in phase as the acoustic mode 
(2).  For the optical mode, the ion and its basis move at the same amplitude but out of phase; this 
results in the pair’s center of mass remaining constant.  This optical mode occurs with a frequency 
of vibration in the infrared region, thus the optical branch label.  

 

Figure 14.  Ion motion during different vibration modes (12). 

4.4 Normal Modes of a Two-Dimensional Monatomic Lattice 

To calculate the normal modes of a 2-D lattice, the methods for the 1-D chain were modified and 
expanded.  We accomplished this by taking the planar lattice as a mesh of three chains:  a hori-
zontal, a vertical, and a diagonal.  As shown in figure 15, the lattice has an arbitrary spacing of a, 
b, and the diagonal distance in which those result.  For simplicity, the lattice is made to be mona-
tomic.  The l and n variables serve as counters to designate which ion in the lattice is being used.   

Applying these three chains results in an equation for the potential energy, given by 
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Figure 15.  Representation of a 2-D monatomic  
lattice. 

As before, we find the equation of motion for the transverse modes through the medium by taking 
the second derivative of the potential energy equation.  K, G, and H are the three “spring constants” 
or interaction energy between the ions.  These values were found with the Lennard-Jones potential.  
For the 2-D modes, we made the calculation more accurate by also looking at the next closest 
neighbors for the interaction energy.  If the lattice spacing constants a and b are equal (square 
lattice), the values of K and G will be the same because of the monatomic stipulation.  The resulting 
equation of motion is 

, , 1, 1, , , 1 , 1 , 1, 1 1, 12 2 2 2l n l n l n l n l n l n l n l n l n l nMu K u u u G u u u H u u u− + − + − − + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − − − − − − − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦&&
. 

With a monatomic lattice, there is only one solution form to satisfy the equation of motion, which 
is 

)(
,

tnbklaki
nl

yxeu ω−+= . 

Substituting the solution into the equations of motion and solving for the frequency, ω is shown 
below: 

[ ]

( ) ( )2

2

2 2 2 2

2 1 cos( ) 2 1 cos( ) 4 1 cos( )

2 (1 cos( )) (1 cos( )) 2 (1 cos( )) .

y y x y x yx x ik b ik b i k a k b i k a k bik a ik a

x y x y

x y x y

M K e e G e e H e e

M K k a G k b H k a k b

K k a G k b H k a k b
M

ω

ω

ω

− − + +− ⎡ ⎤ ⎡ ⎤⎡ ⎤= − − − − − − − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤= − − − − − − +⎣ ⎦ ⎣ ⎦

⎡ ⎤= − − + − + − +⎣ ⎦

 

The resulting normal mode equation is  
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With the 2-D planar lattice, it is possible to have wave vectors in multiple directions as opposed to 
the 1-D chain which could only support a wave vector in the chain’s direction.  These allowable 
wave vectors are 
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ππr
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4.5 Two-Dimensional MATLAB Results 

The MATLAB code for the 2-D planar lattice, as shown in appendix C, was more complicated than 
the 1-D chain.  The main complexity came from the wave vector consideration.  In a 1-D chain, the 
only possible wave vector is the vector traveling through the chain.  In the 2-D plane, there may 
exist horizontal, vertical, and diagonal wave vectors.  Figure 16 depicts the dispersion relation for a 
wave vector with only a horizontal component (the vertical wave vector component was set to zero). 
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Figure 16.  Dispersion curve for a 2-D lattice.  (The wave vector is only  
in the horizontal direction.) 

In figure 17, the horizontal and vertical wave vector components were set to equal each other so 
the wave travels diagonally through the planar lattice.  This results in a 3-D graph since the 
dispersion relation has components in the vertical and horizontal. 

kx=ky 

In figures 16 and 17, it is clear that the depicted dispersion relation only has an acoustic mode.  
These curves are very similar to what was seen with the 1-D monatomic chain.  With the planar 
lattice consisting of only a single type of ion, it is expected there would be no optical mode.  If 
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another ion were introduced into the lattice or a basis were added to each lattice point, an optical 
branch would appear in the dispersion relation. 

 
Figure 17.  Dispersion curve for a 2-D lattice.  (The wave vector is diagonal.) 

 

5. Massachusetts Institute of Technology (MIT) Photonic Bands 

The MIT photonic bands (MPB) package is a Unix3-based program for computing band structures 
of periodic structures.  The package was developed by Steven G. Johnson and the Joannopoulos 
Ab Initio Physics group at MIT.  The program computes the eigenstates (harmonic modes) of 
Maxwell’s equations in periodic structures, given arbitrary wave vectors (13).  The program uses 
vector-based math and 3-D analytical methods. 

The program is a large step above the MATLAB code introduced in the previous section.  It was  
a logical step in the research progression; the MPB package works well with photonic crystals 
whereas the MATLAB code was only applicable to phonon mode calculations.  The MPB package 
can accept a wide range of periodic structures and calculates the corresponding dispersion relations.   

The MPB package runs a set of provided specifications that are set in a control file.  The control 
files are formatted text documents of the form “*.ctl”.  These control files set the geometry of the 
structure, the number of eigenvectors to compute, what values and information to output, and any 
other important specifications.  When run, the control file activates and accesses a library (libctl) 
of programming commands that tell the MPB program what to compute.  This allows the creation 
of the control files to be very simple.  To run the MPB program, a command such as the following 
is typed in the Unix prompt: 

                                                 
3Unix is a registered trademark of The Open Group. 
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unix% mpb *.ctl >& *.out 

This command tells the MPB program to run the *.ctl file and output the results in the *.out file.  
This *.out file is a readable text file that will provide the results of the calculations the program has 
run.  Several commands that can be invoked at the prompt provide specific information contained 
in the *.out without the user opening the whole document. 

• unix% grep Gap *.out 

This command will provide any band gaps in the computed *.out file.  It is important to note that 
any gaps < 1% are most likely attributable to band crossings and are not true band gaps; they have 
been shown in red in the sample output below. 
       Gap from band 1 (0.275065617068082) to band 2 (0.446289918847647), 47.4729292989213% 
       Gap from band 3 (0.563582903703468) to band 4 (0.593059066215511), 5.0968516236891% 
 Gap from band 4 (0.791161222813268) to band 5 (0.792042731370125), 0.111357548663006% 
 Gap from band 5 (0.838730315053238) to band 6 (0.840305955160638), 0.187683867865441% 
 Gap from band 6 (0.869285340346465) to band 7 (0.873496724070656), 0.483294361375001% 
 Gap from band 4 (0.821658212109559) to band 5 (0.864454087942874), 5.07627823271133% 
 

• unix% grep tmfreqs *.out > *.tm.dat 
      unix% grep tefreqs *.out > *.te.dat 

This pair of commands takes the TE and TM bands from the *.out output file and organizes the 
band data into a uniform list.  This makes it very easy to take the band structure data and use it for 
whatever is desired.  A sample *.te.dat file is shown below.  

tefreqs:, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1.41421, 1.41421, 1.41421 
tefreqs:, 2, 0.1, 0, 0, 0.1, 0.1, 0.9, 1.00499, 1.00499, 1.1, 1.34536, 1.34536, 1.48661 
tefreqs:, 3, 0.2, 0, 0, 0.2, 0.2, 0.8, 1.0198, 1.0198, 1.2, 1.28062, 1.28062, 1.56205 
tefreqs:, 4, 0.3, 0, 0, 0.3, 0.3, 0.7, 1.04403, 1.04403, 1.22066, 1.22066, 1.3, 1.64012 
tefreqs:, 5, 0.4, 0, 0, 0.4, 0.4, 0.6, 1.07703, 1.07703, 1.16619, 1.16619, 1.4, 1.72047 
tefreqs:, 6, 0.5, 0, 0, 0.5, 0.5, 0.5, 1.11803, 1.11803, 1.11803, 1.11803, 1.5, 1.80278 
tefreqs:, 7, 0.5, 0.1, 0, 0.509902, 0.509902, 0.509902, 1.02956, 1.02956, 1.2083, 1.2083, 1.50333, 1.74929 
tefreqs:, 8, 0.5, 0.2, 0, 0.538516, 0.538516, 0.538518, 0.943398, 0.943399, 1.3, 1.3, 1.51327, 1.7 
tefreqs:, 9, 0.5, 0.3, 0, 0.583095, 0.583095, 0.583095, 0.860233, 0.860233, 1.39284, 1.39284, 1.52971, 1.52971 
tefreqs:, 10, 0.5, 0.4, 0, 0.640312, 0.640312, 0.640312, 0.781025, 0.781025, 1.48661, 1.48661, 1.55242,1.55242 
tefreqs:, 11, 0.5, 0.5, 0, 0.707107, 0.707107, 0.707107, 0.707107, 0.707107, 1.58114, 1.58114, 1.58114,1.58114 
tefreqs:, 12, 0.4, 0.4, 0, 0.565685, 0.565685, 0.72111, 0.72111, 0.848528, 1.45602, 1.45602, 1.52315, 1.64924 
tefreqs:, 13, 0.3, 0.3, 0, 0.424264, 0.424264, 0.762898, 0.763656, 0.990966, 1.33459, 1.33471, 1.47686,1.72306 
tefreqs:, 14, 0.2, 0.2, 0, 0.282843, 0.282843, 0.824621, 0.824621, 1.13137, 1.21655, 1.21655, 1.44222, 1.44222 
tefreqs:, 15, 0.1, 0.1, 0, 0.141421, 0.141421, 0.905539, 0.905539, 1.10454, 1.10454, 1.27279, 1.42127, 1.42127 
tefreqs:, 16, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1.41421, 1.41421, 1.41421 

The following three sections demonstrate just a small sample of the capabilities of the MPB 
program.  Sections 5.1 and 5.2 show the analyses of a diamond and tri-rod structure, respectively.  
Section 5.3 shows how a new structure can be defined and analyzed with the control file.  
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To construct graphs from the output files (*.out), the following procedure was followed.  It is 
important to note that all the steps can be done with Unix-based programs, but for ease of use, the 
data were brought into the Windows4 OS for manipulation. 

1. Run the following to create an output file containing the data for the desired periodic structure: 
unix% mpb *.ctl >& *.out 

2. Run the following to organize the output file data into a manageable format: 
 unix% grep tmfreqs *.out > *.tm.dat 
 unix% grep tefreqs *.out > *.te.dat 

3. With Excel5 the data can be imported from the *.dat file into the spreadsheet.  It is crucial 
in this step to use comma delimitation to have to data organized in the spreadsheet to 
greatly accelerate the graphing process. 

4. In Excel, the data can be easily graphed and analyzed. 

5.1 Diamond Structure 

The MPB package came with a folder of sample structures.  This folder contained the control files 
for a range of different periodic structures to demonstrate the MPB software’s capabilities.  The 
on-line MPB tutorial (13) provides a walk-through of the diamond structure control file; the walk-
through is covered in this section.  The diamond control file (diamond.ctl) sets up the periodic 
structure of a 3-D diamond lattice of dielectric spheres in air.  A 3-D model of this structure is 
shown in figure 18.  The control file is given in appendix D.  This structure and corresponding full 
band gap were first introduced by Ho, Chan, and Soukoulis (14).   

We calculated the bands by running the following command: 
 unix%  mpb diamond.ctl >& diamond.out  

Based on Ho, Chan, and Soukoulis (14), a full band gap should exist in the band structure.  This is 
explored by the following command: 

 unix% grep Gap diamond.out 
 Gap from band 2 (0.396348703007373) to band 3 (0.440813418580596), 10.6227251392791% 

This output shows that there is a 10.6% band gap from band 2 to band 3.  This gap can be seen in 
figure 19 from the tutorial and figure 20 which was generated with Excel to graph the MPB output 
data.  Figures 18 and 19 are identical, which verifies that the MPB code and resulting data files 
were used correctly.  Figure 19 also matches a figure from the paper (14).  The figure from the 
paper was generated by other means; it is encouraging that it matches the MPB output. 

                                                 
4Windows is a trademark of Microsoft Corporation. 
5Excel is a trademark of Microsoft Corporation. 
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Figure 18.  Diamond structure depiction (13) (MIT  
photonic-band tutorial figure). 

 
Figure 19.  Diamond band diagram (14) (MIT photonic-band tutorial figure). 
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Figure 20.  Diamond band diagram (MIT photonic-band program generated plot). 

5.2 Tri-rods Structure 

The second periodic structure MPB example that was covered in the on-line MPB tutorial (13) was 
the tri-rods structure control file (tri-rods.ctl).  The walk-through from the on-line tutorial is covered 
in this section.  The structure is a 2-D triangular lattice of dielectric rods (figure 19).  The control 
file, tri-rods.ctl is shown in appendix E.   

 
Figure 21.  Rods in a triangular  

lattice (13), top view. 

We calculated the bands by running the following command: 

 unix%  mpb tri-rods.ctl >& tri-rods.out  

The band gaps were verified with the following command: 
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 unix% grep Gap tri-rods.out 
 
Gap from band 1 (0.275065617068082) to band 2 (0.446289918847647), 47.4729292989213% 
Gap from band 3 (0.563582903703468) to band 4 (0.593059066215511), 5.0968516236891% 
Gap from band 4 (0.791161222813268) to band 5 (0.792042731370125), 0.111357548663006% 
Gap from band 5 (0.838730315053238) to band 6 (0.840305955160638), 0.187683867865441% 
Gap from band 6 (0.869285340346465) to band 7 (0.873496724070656), 0.483294361375001% 
Gap from band 4 (0.821658212109559) to band 5 (0.864454087942874), 5.07627823271133% 

The gaps in red are less than 1% and are therefore bands crossing one another.  The other three 
bands are significant in size and can be seen on the band structure diagram (see figure 22).  It is 
important to note that unlike the diamond structure, there is no complete band gap.  There are only 
partial TE and TM band gaps.  In figure 22, the light blue area represents TM band gaps and the 
light red represents the TE band gap. 

Figure 23 shows the Excel graph generated from the output (tri-rods.*.dat).  It can be seen that the 
band structure in figure 23 identically matches the band structure diagram in figure 22 from the on-
line MPB tutorial.   

 

Figure 22.  Tri-rods band diagram (13) (MIT photonic band tutorial figure). 
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Figure 23.  Tri-rods band diagram (MIT photonic band program-generated plot). 

5.3 Sample Structure 

After the two examples are complete, the on-line MPB tutorial (13) shows how to create a control 
file.  This is shown in the user tutorial section.  After one becomes familiar with the basic commands 
through the user tutorial, the user reference section on line (13) can be used to further explore com-
mands that can be used in the control file.  To test the program and control file function, a sample 
structure was developed and run.  The sample control file (sample.ctl) is shown in figure 24.  The 
control file is very short and concise.  This is part of the advantage of the library (libctl) discussed 
before.  It allows short commands such as "set! *" to call up a longer code in the library that the 
MPB program then executes.  The sample structure is a 3-D cube of dielectric material with an air 
hole at its center.  

We calculated the bands for the sample structure by running the following command:  

 unix%  mpb sample.ctl >& sample.out  

To look at the band gap, the familiar “unix% grep Gap sample.out” was used, but no output was 
provided.  This is because there are no partial or full band gaps in the structure.  This is evident 
in the band diagram in figure 25.  

 
 
 
 
 



 

24 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 24.  Sample control file for MPB. 
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Figure 25.  Sample band structure (MIT photonic band program-generated plot). 

  (set! num-bands 8) 
 
(set! k-points (list (vector3 0 0 0)     ; Gamma 
(vector3 0.5 0 0)   ; X 
(vector3 0.5 0.5 0) ; M 
(vector3 0 0 0)))   ; Gamma 
 
(set! k-points (interpolate 4 k-points)) 
 
; A unit cube of dielectric  material with a spherical air hole of radius 0.2 at 
; its center, 
 
(set! geometry (list 
(make block (center 1 2 3) (material (make dielectric (epsilon 12))) (size 1 1 1)) 
(make sphere (center 1 2 3) (material air) (radius 0.2)))) 
 
(set! geometry-lattice (make lattice (size 1 1 no-size))) 
 
(set! resolution 32) 
 
(run-tm) 
(run-te) 
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5.4 MIT Photonic-Bands Conclusion 

The MPB package is a powerful program to use in the study of photonic crystals.  After the pre-
liminary study of the background of photonics and photonic crystals, the program’s capabilities are 
easy to appreciate.  The ability to specify the geometry of periodic structures with easy commands 
in the control file allows for the fast study of different structures.  The MPB program is useful as a 
concept evaluator to analyze and predict the band structures of conceived designs through 
computational modeling before we perform physical experiments. 

The MPB package proved to be a useful educational tool.  The control file feature allows the 
program to be very user friendly.  The basic commands used in the control file can be quickly 
learned from the on-line tutorial and user reference, leading to immediate results of photonic 
properties of materials. 
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Appendix A.  Lennard-Jones Potential 

The Lennard-Jones potential is a mathematical formula that approximates the interaction energy 
between two ions, based on their radius of separation r.  As seen in figure A-1, at close range, there 
is a repulsive energy that goes to infinity.  Farther away, there is an attractive force that tends 
toward zero as the radius of separation is increased.  In the derivation below, Φ(r) is the value of 
the interaction potential.  The derivative of Φ(r) is taken twice to find the “spring constant” or 
interaction energy between two ions.  This interaction energy was used in the normal phonon mode 
derivations and MATLAB programs. 
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Figure A-1.  Lennard-Jones potential.  (The graph shows how closely the  
Lennard-Jones potential fits the empirical curve for argon atoms.   
The x-axis is the radius of separation in angstroms [1].) 
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Appendix B.  MATLAB Code:  Dispersion Curves for One-Dimensional 
Lattice  

clear all 
clc 
%function omega = dispersion(phi) 
syms L N omega k kx ky a b K G M 
 
%Test Input 
L=10; 
N=10; 
a=4.33; 
b=20; 
K=1; 
G=2; 
M=1; 
 
j=1; 
%Set loop to cover entire lattice 
e=-N/2; 
r=N/2; 
for i = e:.1:r 
    %Wave vector 
    kx(j)= (2*pi()/a)*(i/L); 
    %Dispersion Curve Equation 
    omega1(j) = sqrt(((K+G)/M)+(1/M)*sqrt(K^2+G^2+2*K*G*cos(kx(j)*a))); 
    omega2(j) = sqrt(((K+G)/M)-(1/M)*sqrt(K^2+G^2+2*K*G*cos(kx(j)*a))); 
    j=j+1; 
end 
kx=double(kx); 
omega1=double(omega1); 
omega2=double(omega2); 
plot(kx, omega1, kx, omega2) 
legend('Optical Branch','Acoustic Branch','Location','NorthEast') 
xlabel('k') 
ylabel('w(k)') 
axis([-pi()/a pi()/a 0 3.5]) 
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Appendix C.  MATLAB Code:  Two-Dimensional Phonon Dispersion Curve 

function Dispersion2D(epsilon, sigma, r, m) 
%Phonon Dispersion Curves for Two-Dimensional Monatomic Lattice  
%function Dispersion2D(epsilon, sigma, r, m) 
%Calcualte Interaction Energy 
phi= 8*epsilon*(((78*sigma^12)/(r^14))-((21*sigma^6)/(r^8)))... 
+8*epsilon*(((78*sigma^12)/((2*r)^14))-((21*sigma^6)/((2*r)^8))) 
%Next nearest neighbors addition 
%Xenon Test Inputs 
%epsilon=0.02; 
%sigma=3.98; 
%r=4.33; 
%m=131.29  
syms L N omega k kx ky a b K G M 
%Input for Monatomic Homogeneous Lattice: 
a=r; 
b=r; 
K=phi; 
G=phi; 
M=m*1.66053886e-27; %convert amu to kg 
%Lattice Size: 
L=10; N=10; 
%Set loop to cover entire lattice 
e=N/2; 
j=1; 
for i = -e:.1:e 
    kx(j)= (2*pi()/a)*(i/L); 
    ky(j)= (2*pi()/b)*(i/N); 
    %k(i)=[kx(i), ky(i)]; 
    %Dispersion Curve Equation 
    omega(j) = 2*sqrt(K/M)*abs(sin((1/2)*kx(j)*a))... 
    +2*sqrt(G/M)*abs(sin((1/2)*ky(j)*b)); 
    j=j+1; 
end 
kx=double(kx); 
ky=double(ky); 
omega=double(omega); 
plot(kx, omega) 
xlabel('k') 
ylabel('w(k)') 
axis([-pi()/a pi()/a 0 1.1*max(omega)]) 
legend('Acoustic Branch','Location','North') 
figure 
plot3(kx, ky, omega) 
xlabel('k'); ylabel('k'); zlabel('w(k)') 
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Appendix D.  Diamond Structure Control File (diamond.ctl) 

 (set! geometry-lattice (make lattice 
                          (basis-size (sqrt 0.5) (sqrt 0.5) (sqrt 0.5)) 
                          (basis1 0 1 1) 
                          (basis2 1 0 1) 
                          (basis3 1 1 0))) 
 
; Corners of the irreducible Brillouin zone for the fcc lattice, 
 ; in a canonical order: 
 (set! k-points (interpolate 4 (list 
                                (vector3 0 0.5 0.5)            ; X 
                                (vector3 0 0.625 0.375)        ; U 
                                (vector3 0 0.5 0)              ; L 
                                (vector3 0 0 0)                ; Gamma 
                                (vector3 0 0.5 0.5)            ; X 
                                (vector3 0.25 0.75 0.5)        ; W 
                                (vector3 0.375 0.75 0.375))))  ; K 
 
 ; define a couple of parameters (which we can set from the command-line) 
 (define-param eps 11.56) ; the dielectric constant of the spheres 
 (define-param r 0.25)    ; the radius of the spheres 
 
 (define diel (make dielectric (epsilon eps))) 
 
 ; A diamond lattice has two "atoms" per unit cell: 
 (set! geometry (list (make sphere (center 0.125 0.125 0.125) (radius r) 
                            (material diel)) 
                      (make sphere (center -0.125 -0.125 -0.125) (radius r) 
                            (material diel)))) 
 
 ; (A simple fcc lattice would have only one sphere/object at the origin.) 
 
 (set-param! resolution 16) ; use a 16x16x16 grid 
 (set-param! mesh-size 5) 
 (set-param! num-bands 5) 
 
 ; run calculation, outputting electric-field energy density at the U point: 
 (run (output-at-kpoint (vector3 0 0.625 0.375) output-dpwr)) 
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Appendix E.  Tri-Rods Structure Control File (tri-rods.ctl) 

(set! num-bands 8) 
 
(set! geometry-lattice (make lattice (size 1 1 no-size) 
                         (basis1 (/ (sqrt 3) 2) 0.5) 
                         (basis2 (/ (sqrt 3) 2) -0.5))) 
(set! geometry (list (make cylinder 
                       (center 0 0 0) (radius 0.2) (height infinity) 
                       (material (make dielectric (epsilon 12)))))) 
 
(set! k-points (list (vector3 0 0 0)          ; Gamma 
                     (vector3 0 0.5 0)        ; M 
                     (vector3 (/ -3) (/ 3) 0) ; K 
                     (vector3 0 0 0)))        ; Gamma 
(set! k-points (interpolate 4 k-points)) 
 
(set! resolution 32) 
 
(run-tm (output-at-kpoint (vector3 (/ -3) (/ 3) 0) 
                          fix-efield-phase output-efield-z)) 
(run-te) 
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Appendix F.  An Introduction to Ferroelectric Fatigue 

Introduction 

Ferroelectric materials have many applications because of their ability to have spontaneous 
polarization.  They are used in sensors and actuators in addition to dynamic and non-volatile 
ferroelectric memory devices.  Unfortunately, there are several drawbacks to ferroelectric 
materials.  Ferroelectrics have low fracture toughness and can crack easily because of their brittle 
nature.  Another main issue preventing the widespread commercialization of ferroelectric materials 
is ferroelectric (polarization) fatigue.  This is the loss of switchable polarization in a material as a 
function of the number of switching cycles.  A switching cycle is when an applied external electric 
field is cycled from one direction to the complete opposite.  The crack formation and ferroelectric 
fatigue lead to a loss in performance of the material.  Ferroelectric performance is the ability and 
quickness with which the material can switch polarization.  This performance loss generates 
reliability concerns for devices that use ferroelectrics. 

A way to predict ferroelectric fatigue would provide great insight into improving the fatigue life.  
Fatigue life is the number of cycles until the material fails and can no longer switch polarizations.  
This would open the door for optimization of ferroelectric materials.  One way to accomplish this 
goal is through the use of a model that can provide fatigue life based on entered parameters.  Arias 
et al.6 propose a phenomenological cohesive model of ferroelectric fatigue to predict fatigue life. 

Background 

A dielectric material is one that is non-conducting.  Ferroelectrics are a subset of dielectrics that 
exhibit interesting properties such as a high dielectric constant.  They are materials that are polar 
by nature.  They are polar because ferroelectric crystal cells have a dipole moment even when not 
subjected to an external electric field.  The dipole is a result of different center locations of the 
positive and negative charges within the crystal cell.  Because of the dipole moment, the crystal is 
said to be polarized, meaning it contains a dipole moment that acts over some volume.  Crystals 
that have spontaneous polarization are called pyroelectric and the polarization occurs along the 
polar axis.  Ferroelectrics have multiple equilibrium states of the spontaneous polarization vector.  
An applied external electric field can switch the orientation of the spontaneous polarization vector 
is if is strong enough to overcome the polarization energy barrier.   

Ferroelectric materials have a temperature above which they become paraelectric, meaning they  
no longer are spontaneously polarized.  The temperature where this occurs is the Curie point, Tc.  
Below the Curie temperature, the ferroelectric crystal undergoes a structural phase change.  This 

                                                 
6Arias, I.; Serebrinsky, S.; Ortiz, M.  A Phenomenological Cohesive Model of Ferroelectric Fatigue.  Acta Mater. 

2006, 54 (4), 975-984. 
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shift of atoms within the cell generates the polarization as well as new unit cell dimensions.  The 
spontaneous polarization does not have to occur uniformly across the whole medium.  Multiple 
polarization vectors can exist across the material.  Areas of the same polarization direction are 
known as ferroelectric domains.  The orientation of ferroelectric domains throughout the material 
is attributable to the mechanical and electrical boundary conditions to which the material is 
subjected.  The domains orient themselves to minimize the surface charge and the elastic energy 
resultant of mechanical constraints.  The surface charge is a result of the onset of spontaneous 
polarization.  This surface charge produces an electric field called a depolarizing field which acts 
opposite the overall polarization7.  The area where two domains meet is a domain wall.  If the 
domains are oppositely polarized, it is a 180-degree domain wall.  If the domains’ polarization 
vectors are perpendicular to one another, it is a 90-degree domain wall. 

A plot of polarizations versus electric field will produce a hysteresis loop.  This demonstrates the 
ability of an electric field to reverse the spontaneous polarization of some or all domains in the 
material.  If the crystal starts with an equal number of opposing domains, its overall polarization is 
zero.  If an electric field is applied, some of the domains opposing the field will reverse.  As the 
field is increased, the domains will continue to switch until a critical point (the state of saturation) 
is reached.  At this point, all domains are oriented in the direction of the field.  If the field is 
decreased, the polarization will not return to zero but will decrease more gradually.  When the field 
is reduced to zero, some of the domains will retain the direction of the first critical state; this is 
known as remnant polarization, Pr.  If an opposite field is applied, the domains will reverse direc-
tion until all are oriented with the field at a second opposite state of saturation.  The coercive field, 
Ec, is the electric field required for the polarization to equal zero. 

Ferroelectric fatigue is a very complex phenomenon.  It is defined as the loss of remnant polariza-
tion as a function of the number of switching cycles.  In addition to electric field cycling, other 
factors can decrease the remnant polarization.  Several fatigue mechanisms have been identified as 
causes of ferroelectric fatigue.  Domain wall pinning is where space charges or injected charges 
prevent the movement of domain walls; this mechanism operates mostly in the bulk of the 
material.  Near the electrode interfaces, nucleation of oppositely oriented domains is inhibited.  
This means that the formation of opposite domains is prevented by space charges produced during 
electric field cycling.  Oxygen vacancies in the crystal could also be a fatigue mechanism.  The 
vacancies could pin domain walls and/or create structural damage at the interface between the 
ferroelectric and electrode.  Micro-cracking is also identified as a cause of polarization loss, 
although it is a purely mechanical defect.  Concentrated stress or electric fields at the crack tip 
induce local switching that can shield or promote crack growth.  Crack growth is affected by 
electrical conditions at crack faces, by the grain size, and by the porosity of the material8.  Many 

                                                 
7Damjanovic, D.  Ferroelectric, Dielectric and Piezoelectric Properties of Ferroelectric Thin Films and Ceramics.  

Rep. Prog. Phys. 1998, 61 (9), 1267–1324. 
8Arias, I.; Serebrinsky, S.; Ortiz, M.  A Phenomenological Cohesive Model of Ferroelectric Fatigue.  Acta Materialia 

2006, 54, 975-984. 
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fatigue mechanisms may depend on frequency as well as the amplitude of the applied electric field.  
Ferroelectric fatigue causes the polarization versus electric field hysteretic loop to change shape.  
After a certain number of cycles corresponding with onset of fatigue, the maximum polarization 
level or state of saturation decreases.  The crystal is no longer able to attain its original maximum 
polarization.  

Cohesive Model 

Paris et al.9 laid the foundation for fatigue life prediction.  The work provided phenomenological 
laws relating applied stress amplitude to fatigue crack growth rate.  The model is known as Paris’ 
Law.  The law was ground breaking at the time but was based on the ideal conditions of small 
yielding, constant stress amplitude and long cracks.  If these criteria were not met, the law’s 
prediction capabilities were greatly diminished.  Although Paris’s law only worked for select 
cases, it paved the way for future fatigue modeling in materials. 

A model using cohesive laws was developed by Nguyen et al.10 to predict fatigue life based on 
fatigue crack growth.  The model was prepared to predict the fatigue life of metals (aluminum was 
used for experimental data)).  The model augmented Paris’ law through the use of cohesive laws.  
These laws exhibit unloading-loading hysteresis which allows for steady crack growth modeling.  
Cohesive theories take fracture as a gradual process where incipient material surface separation is 
resisted by cohesive tractions.  The tractions go to zero at a point of critical opening displacement.  
Previous models used an elastic cycle of fatigue but the cohesive law replaces that with unloading-
loading hysteresis.  Many of the previous modifications of Paris’ law had been ad hoc, meaning 
they were derived from experimental data.  The cohesive laws provided a means to create a model 
that could predict fatigue life before experimental data were taken.  The crack growth results from 
interaction of bulk cycle plasticity, closure, and gradual decohesion at the crack tip.  This model 
was a step in the right direction but no cohesive model existed for ferroelectric materials. 

In 2004, Arias et al. developed a model to describe fatigue-crack nucleation and growth for 
ferroelectric materials subject to electro-mechanical loading.  This was the first model based 
around a hysteretic cohesive law that couples mechanical and electric fields to predict fatigue in 
ferroelectrics.  This was important because ferroelectric materials demonstrate electrical and 
mechanical fatigue under cyclic electrical loading.  The model also could take into account electro-
mechanical loading which is what ferroelectrics are subjected to in operation more often than 
purely mechanical stress as in metals.  The cohesive law can be used in tandem with general 
constitutive relations of bulk behavior to predict fatigue crack growth under arbitrary loading 
conditions.  This model is also able to predict fatigue crack nucleation which the previous crack 
growth model (2001) could not.  This is important for fatigue prediction in smooth-surfaced 

                                                 
9Paris, P.C.; Gomez, M.P.; Anderson, W.P.  A Rational Analytical Theory of Fatigue.  The Trend in Engineering 

1961, 13, 9-14. 
10Nguyen, O.; Repetto, E. A.; Ortiz, M.; Radovitzky, R.  A Cohesive Model of Fatigue Crack Growth.  Int. J. 

Fract. 2001, 110 (4), 351–369. 
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material with no initial cracking.  One large benefit of this model is the ability of cohesive theories 
to apply to arbitrary crack and specimen geometries and loading histories.  A shortcoming of the 
model is that it is phenomenological in nature and some details were chosen because of conveni-
ence.  We must determine some parameters of the model experimentally by fitting to fatigue data 
or by measuring parameters individually. 

The most recent phenomenological cohesive model of ferroelectric fatigue produced by Arias et al. 
(2006) is a great advancement in ferroelectric fatigue life prediction.  Like the preceding model, it 
predicts ferroelectric fatigue under electro-mechanical loading through the use of cohesive laws.  
The revised cohesive law couples mechanical displacement and electric-potential discontinuity to 
mechanical tractions and surface-charge density.  The model applies to fatigue when it is localized 
in planar surfaces that are treated as cohesive surfaces.  The surface is modeled as a ferroelectric 
material by representing both mechanical opening displacement and electric-potential discontinu-
ity.  The cohesive law is extended to represent these and mechanical tractions and surface-charge 
density as a work-conjugate pair.  To retrieve qualitative data, a “Smith-Ferrante monotonic 
envelope” and an exponential-decay law of loading-unloading hysteresis were used.  The model 
delivers the following: 

 -Existence of a threshold field for the onset of fatigue, 

 -Dependence of threshold on the applied field frequency, 

 -Dependence of fatigue life on the amplitude of the field, 

 -Dependence of the coercive field on the size of the component (size effect). 

To gauge the validity of the system, a simple test configuration provided experimental data to 
compare to the model output.  The test configuration consisted of an “infinite” slab of PZT (lead 
zirconate titanate Pb[ZrxTi1-x]O3) acted upon by an oscillatory voltage differential across the slab 
without other stresses.  The results were not conclusive but they did indicate planar-like regions 
affected by cycling may lead to the observed fatigue in tetragonal PZT. 

Conclusion 

To accurately determine the interactions between fracture, deformation, and defective structures 
that cause ferroelectric fatigue, a physics based multi-scale model is needed.  This model would be 
a huge step in predicting the fatigue life of ferroelectric devices.  Until that is produced, the current 
phenomenological model should be improved upon and validated by experiments so it will be 
useful for future ferroelectric design.  Several actions can be taken to improve the current model.  
The first is to run the same simple test configuration that was done with PZT on different ferro-
electric materials.  Having more data on multiple materials will aid in the following proposed 
actions.  Extension and calibration of the model could improve data agreement.  The results could 
also optimize fit to the experimental data.  Assumptions made in the derivation of the model could 
be studied further to confirm their validity.  Another area of concern is the fact that the model only 
applies to changes in properties that lead to fatigue in planar regions.  A more comprehensive 
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model working on arbitrary sections of material would be very helpful for specific material 
application fatigue prediction.  Full finite element calculations, more precise bulk material 
constitutive relations, and the study of the cohesive law aspects of the monotonic envelope and 
loading-unloading law should be pursued. 

Although results were inconclusive for the cohesive model compared to the experimental test 
configuration, it is crucial to put work into the model to improve it.  To have a model that could 
accurately predict the ferroelectric fatigue effect of an electro-mechanical loading would greatly 
aid future work with ferroelectric materials such as PZT.  The properties of these ferroelectric 
materials make them crucial in the improvement of current technologies and the implementation 
of emerging technologies.  Fatigue aspects are especially important for the Army where 
equipment is constantly subjected to harsh and dynamic operating conditions.    
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